Topology-Aware 3D Reconstruction for Cable-Stayed Bridges

Reporter: Mr. Fangqiao Hu

Advisor: Prof. Hui Li

School of Civil Engineering
Harbin Institute of Technology

Objective

Multi-view images

Topology aware 3D model

How did the traditional methods fail?

	Local part 1	Local part 2	Results
Point cloud			The last section of the la
Surface reconstruction		ZZZ	PERSONNANNAN PROPERTIES
The proposed method			

Three main problems: (I) the input, (II) the output, (III) from input to output

Part I

The output: how to represent a 3D bridge model?

How to represent a 3D bridge model?

How to represent a 3D bridge model?

TABLE: A comparison among different 3D representation forms.

	(a) Polygonal mesh	(b) Geometric primitives	(c) Point cloud	(d) Volumetric model
Expression	$\{V \in \mathbb{R}^{n \times 3}, F \in \mathbb{N}^{m \times 3}\}$	$\left\{ \{B_i \in \mathbb{R}^8\}_{i=1}^m, \left\{ C_j \in \mathbb{R}^7 \right\}_{j=1}^n \right\}$	$\{P_i \in \mathbb{R}^3\}_{i=1}^n$	$V \in \mathbb{R}^{n \times n \times n}$
Pros.	Details	Compact	Easy to learn	Easy to learn
Cons.	Very hard to learn	Lose details	Low expression ability	Restricted resolution

Human cognition

Parse a 3D bridge model

Parsing a 3D model

Graph layouts (a binary tree)

Hybrid representation

Part II

The input: how to mine the input data?

Obtaining rough 3D information

Multi-view images:

Images preserve 2D original information and details.

Point cloud:

Point cloud extracts rough 3D information.

Finding RoI in 3D

RoI in 3D:A 3D orientated bounding box (3D OBB)

Loss function

$$E = \left\| \frac{1}{B_{gt}} \otimes (B_{pred} - B_{gt}) \right\|_{2}$$

 B_{gt} : ground truth bounding box

 B_{pred} : predicted bounding box

⊗: element-wise product

Finding RoI in 2D

$$p^T = S_{\lambda} K[R \mid t] P^T$$

p: points in 2D image

P: points in 3D point cloud

 S_{λ} : radial distortion parameters

K: camera intrinsic parameters

[R|t]: camera extrinsic parameters

RoI in 2D: foreground-background segmentation mask

Original image

Segmented foreground

Original image

Segmented foreground

Part III

From input to output: a learning framework

A learning framework

Multi-view CNN

Multi-view CNN

 $X = \{I_i\}_{i=1}^n$: multi-view images

 I_i î $1024^2 1024^2$: a single-view two-channel image

 $h \hat{1}$ = the learned image feature

 $f: X \to h$: the multi-view CNN

Point cloud network

Point cloud network

 $X = \{P_i\}_{i=1}^n$: the point cloud

 P_i î \longrightarrow : a 3D point in point cloud

 $h\hat{}$ = the learned point cloud feature

 $f: X \to h$: the point cloud network

Recursive binary tree network (Recursive BiTreeNet)

Recursive BiTreeNet

Algorithm 1

FUNCTION Recursion

PASS IN: the *i*-th node $X^i \in \mathbb{R}^{128}$, its node class $X^i_{cls} \in \{0,1,2,\text{None}\}$

IF
$$X_{els}^i = \text{None THEN}$$

$$X_{cl}^{i} \leftarrow \text{NodeClassifer}(X^{i})$$

ENDIF

IF
$$X_{els}^i = 0$$
 THEN

(Left child
$$X_{left}^{i+1} \in \mathbb{R}^{128}$$
, Right child $X_{right}^{i+1} \in \mathbb{R}^{128}$) \leftarrow SplitNode(X^i)

PASS OUT: (Recursion(
$$X_{left}^{i+1}, X_{left_ols}^{i+1}$$
), Recursion($X_{right}^{i+1}, X_{right_ols}^{i+1}$))

ELSE IF
$$X_{clz}^i = 1$$

(Left child
$$X_{left}^{i+1} \in \mathbb{R}^{128}$$
, Right child $X_{right}^{i+1} \in \mathbb{R}^{16}$) \leftarrow SimilarNode(X^{i})

PASS OUT: (Recursion(
$$X_{left}^{i+1}, X_{left}^{i+1}$$
), X_{rishr}^{i+1})

ELSE

Child
$$S^{i+1} \leftarrow \text{ShapeNode}(X^i)$$

PASS OUT:
$$S^{i+1}$$

ENDIF

ENDFUNCTION

Shape decoder

Loss functions

Node classification loss

$$L_{cls} = -\sum_{i \in \{1,\dots,n\}} \sum_{x \in X} p_i(x) \log q_i(x)$$

3D shapes loss

$$L_{shape} = \sum_{i \in \{1,\dots,n\}} dist(M_i^{gt}, M_i^{pred})$$

Shapes distance

$$dist(M_1, M_2) = \sum_{v_1 \in M_1} \min_{v_2 \in M_2} ||v_1 - v_2||_2^2 + \sum_{v_2 \in M_2} \min_{v_1 \in M_1} ||v_1 - v_2||_2^2$$

Similar parameters loss

$$L_{sim} = \sum_{i \in \{1,...,n\}} \| S_i^{pred} - S_i^{gt} \|_2$$

Overall loss

$$L = \lambda_{cls} L_{cls} + \lambda_{shape} L_{shape} + \lambda_{sim} L_{sim}$$

Part IV The results

Results – Beipanjiang Bridge

Results – Beipanjiang Bridge

Results – Wuhan Tianxingzhou Bridge

Results – Wuhan Tianxingzhou Bridge

Some of the training data

Summary and conclusions

A revisit to local points based methods

- No structural priors are introduced in these methods.
- Point clouds suffer from noise and uneven distribution.
- Surface reconstruction and point cloud modeling methods failed.

A learning based 3D reconstruction method

- Structural relations and topological properties are considered.
- 3D information is considered in contrast to image based learning methods.

magicme.org

Fangqiao Hu (胡芳侨)

A first year Ph.D candidate in Harbin Institute of Technology (HIT)

3D machine learning; Computer vision; Computer graphics

E-mail: hufangqiao@foxmail.com

Homepage: magicme.org