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How did the traditional methods fail?



Three main problems: (I) the input, (II) the output, (III) from input to output

2D input

3D input

Output

A learning framework



Part I

The output: how to represent a 3D bridge model?



How to represent a 3D bridge model?



(a) Polygonal mesh (b) Geometric primitives (c) Point cloud (d) Volumetric model

Expression 𝑉 ∈ ℝn×3, 𝐹 ∈ ℕm×3 𝐵𝑖 ∈ ℝ8
𝑖=1
𝑚 , 𝐶𝑗 ∈ ℝ7

𝑗=1

𝑛
𝑃𝑖 ∈ ℝ3

𝑖=1
𝑛 𝑉 ∈ ℝ𝑛×𝑛×𝑛

Pros. Details Compact Easy to learn Easy to learn

Cons. Very hard to learn Lose details Low expression ability Restricted resolution 

TABLE: A comparison among different 3D representation forms.

How to represent a 3D bridge model?



Human cognition



Parsing a 3D model Graph layouts (a binary tree)

Parse a 3D bridge model



Geometric primitives Volumetric model

Hybrid representation

3D shapes Graph layouts 3D model

Hybrid representation



Part II

The input: how to mine the input data?



Multi-view images:
Images preserve 2D

original information 

and details.

Point cloud:
Point cloud extracts

rough 3D information.

Structure from Motion 

Obtaining rough 3D information
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Loss function

𝐵𝑔𝑡: ground truth bounding box

𝐵𝑝𝑟𝑒𝑑: predicted bounding box

⊗: element-wise productRoI in 3D: 

A 3D orientated bounding box 

(3D OBB)

Finding RoI in 3D



Original image Segmented foreground Original image Segmented foreground

𝑝: points in 2D image

𝑃: points in 3D point cloud

𝑆𝜆: radial distortion parameters

𝐾: camera intrinsic parameters

[𝑅|𝑡]: camera extrinsic parameters
[ | ]T Tp S K R t P=

Finding RoI in 2D

RoI in 2D: foreground-background segmentation mask



Part III

From input to output: a learning framework



A learning framework



Multi-view CNN



1{ }n

i iX I == : multi-view images

: a single-view two-channel imageI
i
Î»1024´1024´2

hÎ»4096

:f X h→

Multi-view CNN

: the learned image feature

: the multi-view CNN



Point cloud network



1{ }n

i iX P == : the point cloud

: a 3D point in point cloud

hÎ»4096

:f X h→P
i
Î»3

Point cloud network

: the learned point cloud feature

: the point cloud network



Recursive binary tree network (Recursive BiTreeNet)



Recursive BiTreeNet



Shape decoder
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Node classification loss

3D shapes loss

Similar parameters loss

Overall loss

Shapes distance

Loss functions



Part IV

The results



Results – Beipanjiang Bridge



Results – Beipanjiang Bridge



Results – Wuhan Tianxingzhou Bridge



Results – Wuhan Tianxingzhou Bridge



Some of the training data



Summary and conclusions

o A revisit to local points based methods

• No structural priors are introduced in these methods.

• Point clouds suffer from noise and uneven distribution.

• Surface reconstruction and point cloud modeling methods failed.

o A learning based 3D reconstruction method

• Structural relations and topological properties are considered.

• 3D information is considered in contrast to image based learning methods.
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